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Abstract

The paper outlines an agent-based model for language choice in multilingual commu-
nities and tests its performance on samples of data drawn from a large-scale sociolin-
guistic survey carried out in Estonia. While previous research in the field of language
competitionhas focused ondiachronic applications, utilizing rather abstractmodels of
uniformspeakers,weaim tomodel synchronic language competition amongmore real-
istic, data-based agents. We hypothesized that a reasonably parametrized simulation
of interactions between agents endowed with interaction principles grounded in soci-
olinguistic researchwould give rise to a network structure resembling real-world social
networks, and that the distribution of languages used in the model would resemble
their actual usage distribution. The simulation was reasonably successful in replicat-
ing the real-world scenarios, while further analysis revealed that themodel parameters
differ in importance between samples.We conclude that such variation should be con-
sidered in parametrizing future language choice and competition models.
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1 Introduction

The issues of language competition and extinction have long been in the focus
of sociolinguists and language sociologists. Language extinction occurs mainly
through language shift—a process in which users of one language gradually
adopt another language for communication so that the old one falls out of use.
Several complex theories have been developed to explicate the causal factors
in this process (cf. Giles et al., 1977). While there is consensus about the major
factors that affect language shift, “no instrument powerful enough to assess
language shift adequately on a large scale has yet been devised” (Clyne, 2003).
Since the seminal paper by Abrams and Strogatz (2003), computational mod-
elling of language competition has become increasingly widespread, bringing
a new perspective into the discussion and potentially providing such an instru-
ment.

Themathematicalmodel proposedbyAbramsandStrogatz (2003)was quite
simple, assumingpopulations of uniformly connectedmonolingual speakers of
two languages, and explaining language extinction as an outcome of the inter-
action of two abstract variables (status/prestige and volatility, i.e., the speed
of the shift), validated against census data of the proportions of speakers in
several communities. Since then, numerous additions, variations and revisions
to the model have been proposed, with methods drawn from the fields of dif-
ferential equations, computational agent-based modelling, and game theory
(for previous research, cf. Patriarca and Leppänen, 2004; Isern and Fort, 2004;
Kandler et al., 2010; Minett and Wang, 2008; Patriarca et al., 2012; Castelló et
al., 2013; Zhang and Gong, 2013; also, cf. Beltran et al., 2009 for a seemingly
independent, yet very similar study). Agent-based modelling (cf. Sterling and
Taveter, 2009 for an overview) is particularly suitable for modelling language
shift, since it enables modelling emergent, individual-level phenomena that
are at the core of most social dynamics. This trend of computational mod-
elling of language dynamics is also mirrored in research concerned with the
competition of linguistic elements within languages (which may itself lead to
creolization or signal impending language shift) (cf. Baxter et al., 2009; Jansson
et al., 2015).

Ultimately the extinction of a language is a cumulative consequence of
speakers choosing one language over the other for communication in a partic-
ular setting. The choice of a language depends on the language competencies
and attitudes that are in turn influenced by a myriad of environmental factors.
Mathematical or computational models of language competition are thus only
rough approximations of the actual social forces that are in operation in the
cases of language shift. In the aforementioned previous research, populations
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(or agents) are commonly assumed to be homogenous across their respective
communities, sharing the same language proficiency levels and opinions on
the prestige of the languages available to them—a situation unlikely to be true
in the real world. Another complicating matter is that language shift in time
may occur over several generations of speakers who are likely to have vari-
able language competencies, usage preferences and views on the prestige of
the competing languages. However, because of the relatively long duration of
the process of language shift, there is a shortage of reliable datasets that could
be used to assess the accuracy of competing models. As a consequence, the
validation of previous models of language shift has commonly relied on cen-
sus data, which only reflects the coarse proportions of speakers (or as a proxy,
ethnicities) in a given region over time.

The construction of amore precisemodel of language shift should start with
the construction and realistic parametrization of a model of grassroots lan-
guage choice, i.e. a synchronic model that can replicate adequately the use of
competing languages in an existing multilingual society or community. Syn-
chronic data are also much easier to obtain than diachronic data on language
shift. If a synchronic model is found to adequately replicate language choice
in different settings, it would be reasonable to allow for the expansion of the
model to include amechanismof change in language competencies thatwould
affect language choice in favor of one or the other competing language, and
lead to large-scale diachronic changes.

Themodel proposed in this article aims at this first goal—to build an agent-
based model for simulating language choice by a set of speakers that have
different levels of language competencies, social attitudes and linguistic prefer-
ences.Wemade use of data from a large-scale sociolinguistic survey conducted
in Estonia to inform and validate the model (Ehala et al., 2015), as well as to
construct agents that reflect the attributes of the survey participants. To test
the model, we sampled speakers from three qualitatively and quantitatively
different multilingual communities and assessed the accuracy of the model to
predict the linguistic choices of the speakers.We assume that a realistic model
of language ecology should incorporate a social network, as presumably speak-
ers in the real world do not sample their communication partners from the
whole population at random. To that end, we implemented a mechanism that
allows networks to emerge among the simulated speakers.

In summary, as a departure from previous modelling research on language
competition and shift, we propose a model of synchronic language choice,
and validate it against synchronic (self-reported) language usage data. Also in
contrast with previous research, we model the agents of the simulation using
the reported attributes of the participants of the survey, instead of assuming
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homogenous groups of speakers. We measure and report both the fit of the
model in terms of the language use distribution and the level of correspon-
dence of the emergent networks tometrics argued in current research to reflect
the properties of real-world social networks.

The proposed model is the first step in building an agent-based model of
Estonian language ecology that could eventually be, with a certain level of
confidence, used to predict the long-term consequences of possible language-
political or sociological interventions. For this purpose, another, similar survey
should be conducted in the future to allow for a point of comparison and vali-
dation of the diachronic expansion of the model.

The paper is structured as follows. The first section gives a short overview
of the data we used. The second section explicates the theoretical sociolinguis-
tic model underlying our simulation and, in the least technical way possible,
the technical aspects of the simulation model (which are further described in
detail in the Appendix). The third section presents results, followed by discus-
sion and conclusions.

2 The survey

This section serves to provide a brief but by no means exhaustive overview
of the sociolinguistic situation of Estonia and the data we will be using to
inform and validate our model of language choice. The official language of
Estonia is Estonian (which about 69% of the 1.3 million population speak as
their mother tongue, according to the 2011 census), but there is a considerable
Russian-speaking minority (30% of the population). Our model is based on a
survey conducted in 2015 that included 1006 participants across the country,
aged between 15 and 74 (Linguistic attitudes in Estonia 2015 dataset, Ehala et
al., 2015; the data and further details are available at the repository link listed in
the references).Wemodel the choice between three languages—Estonian and
Russian as thenative tongues,withEnglish as apossible lingua francaoption. In
terms of second languages spoken, English is a widely known second language
in Estonia, particularly among the younger generation. Estonian is a common
second language among native speakers of Russian (which in turn is primarily
a second language among the older generation of native Estonian speakers).
Other common second languages are Finnish and German. Most people in
Estonia speak at least one other language in addition to their native tongue,
at least to some extent.

The data from the following questions in the survey questionnaire are used
in the current study. Note that all the questionnaire data is self-reported in
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nature. Therewere two versions of the questionnaire—one in Estonian and the
other in Russian. The only difference between themwas the language in which
the questions were presented and, crucially, what was referred to as the second
language in questions regarding language, as well as the ‘other’ ethnicity in the
respective questions (these are represented in square brackets below).

The respondents were asked to report their language proficiencies in the fol-
lowing form: Please assess your level of fluency in the Estonian | Russian | English
language on a scale of 1–7 (where 1 = don’t know at all and 7 = full fluency). In our
model, homophily (see the model section below) is expressed by ethnic pref-
erence, which is derived from the mean value of the answers to the following
three questions:Ona scale of 1 to 7, how easy is it, in your opinion, to: (1)… become
friends with [Estonians | Russian speakers]? (2) … communicate with [Estonians
| Russian speakers] in the workplace/at school? (3) … find basic common ground
with [Estonians | Russian speakers]? In our model, agents have different proba-
bilities to accept the language choice of their interlocutor (refer to the model
section for details), based on the mean value of answers to the following ques-
tions: On a scale of 1–7, rate the extent to which you agree with the following
statements: (1) I will always choose the language which the other participants of
the conversation understand best. (2) If my conversation partner’s proficiency in
[Estonian | Russian] is low, then Iwould prefer to communicate in a language that
they know better.

For each respondent in the survey, theproportionof their languageuse (used
for the validation of the models) was calculated by taking the mean of the
questions asking about their language choice in communication with friends,
hobby and sports companions, and service personnel. The questions measur-
ing language choice had the following structure, with the language in question
depending again on the language of the questionnaire: In which language do
you communicate with your friends/acquaintances? 1—only in [Estonian|Rus-
sian], 2—mostly in [Estonian|Russian], 3—more in [Estonian|Russian] than in
another language, 4—equally in [Estonian|Russian] and in another language,
5—more in another language than in [Estonian|Russian], 6—mostly in another
language, 7—only in another language. If the respondent chose options 2–7,
they were further askedWhat other language do you have inmind? For the pur-
poses of the analysis, the values were scaled to a range of 0 to 1 and reversed,
so that 1 stands for using only the native language, and 0 for using only another
language (or languages).



224 karjus and ehala

Language Dynamics and Change 8 (2018) 219–252

3 Themodel

This section lays out the basic premise of themodel. The purpose of the agent-
based simulation tool developed for this study is to test a possible (albeit sim-
plified) model of language competition in the society, stemming from indi-
vidual decisions at the speaker level and leading to the distribution of the
language used, observable at the community level. We assume certain proper-
ties of human communication (as described below) and set up the simulation
in a way that allows social networks to emerge among the agents represent-
ing the speakers. Although the simulation relies on a necessarily simplified
model of human communication, we hope to capture themost important vari-
ables affecting language choice, and propose a method to validate the model
and the relative importance of its parameters. In broad terms, the simulation
cycles through a sufficiently large number of iterations, and on each iteration,
two agents from the population attempt to find a common language to com-
municate in, by proposing the languages they know to their partner. Agents
that succeed in finding a common language form a social tie or network link
between them, which makes them more likely to be paired up for another
communication attempt in the forthcoming iterations. Given favorable global
parameters governing theweights of the input variables (see below for details),
this may lead to the formation of a relatively stable social network among the
agents.We validate themodel by counting the languages used by agent pairs in
the network and compare this distribution to the distribution of language use
reported in the sociolinguistic survey.

3.1 Properties of the agents
Based on previous sociological work on social networks and intergroup com-
munication, we hypothesized that the formation of a social tie between two
individuals is affected by the following five factors, which will be explained
in more detail below: 1) the availability of shared languages between them
(language competencies); 2) ethnolinguistic identity; 3) the number of friends
they already share, an effect often referred to as ‘triadic closure’; 4) the extent
of preference for interaction with people of similar ethnic background, or
‘homophily’; and 5) the willingness to accept the communication partner’s
choice of language, or ‘linguistic accommodation.’ Each agent in the model is
based on a participant in the survey.

Language competencies characterize the ability of individuals to use lan-
guages for communication. We assume that each adult individual has com-
petency in at least one language, but may know further languages at different
levels of fluency. In our model, agents can know up to three languages, based
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on the most commonly spoken languages in Estonia: Estonian, Russian and
English (cf. the survey section for details).

Ethnolinguistic identity signifies individuals’ belonging to groups. Our
model assumes two possible ethnolinguistic identities, based on the twomain
ethnolinguistic groups in Estonia: Estonians and Russians. The ethnolinguistic
identity was, as a necessary simplification, determined by the choice made by
the respondents between the two versions of questionnaire (Estonian or Rus-
sian). Note that, while ethnolinguistic identity is a categorical variablewith two
values, language competencies are continuous and provide fine-grained infor-
mation about different patterns of multilingualism.

Triadic closure is a social regularity according to which people are more
likely to interact andmake friendswith people withwhom they share common
friends (Bianconi et al., 2014; Stark, 2015). This factor was not measured by the
sociological survey. However, the agents in the simulation were programmed
to take triadic closure into account when choosing communication partners,
i.e., the probability of interaction between agents that have a link to a shared
third agent was set higher than between agents without triadic closure. Triadic
closure enhances the emergence of clustering in the simulated network, which
is among the assumed properties of real-world networks.

Homophily expresses a social tendency that people prefer to interact with
people that share the same racial, cultural or ethnic background (McPherson
et al., 2001; Stark, 2015; cf. Leetmaa et al., 2015 for an Estonian account). In
ourmodel, homophily is expressed by ethnic preference, based on the relevant
questions in the survey (cf. Section 2 above for details). As the survey indicated
variation among respondents on the scale of ethnic preference, the agents in
ourmodel are also set to prefer interactions with their co-ethnics, according to
the values from the data.

Linguistic accommodation is a phenomenon whereby a communicator
aligns to the languageof the interlocutor (Giles, 2008). Researchhas shown that
people have different propensities to accommodate, depending on the situa-
tion, the communication partner or intergroup attitudes. In previous language
competition research, this has been commonly reflected by the more abstract
notion of language status or prestige. In ourmodel, agents have different prob-
abilities to accept the language choice of their interlocutor, derived from the
answers of the survey participants (cf. Section 2 for details).

3.2 Networks in themodel
In addition to attributes of the agents directly derived from the survey as
described above, we also implemented social networks into the model. This
is based on the assumption that real-world networks exhibit community struc-
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ture (Luthi et al., 2008).They are neither fully connected—such that everybody
has an equal chance to talk to anyone, as is assumed in earlier models (follow-
ing Abrams and Strogatz, 2003)—nor regular lattices, such that everyone only
has a fixed number of neighbors to talk to (Castelló et al., 2013). Community
structure in a social network is also analogous to ecological niches in that it
reduces competition and allows for the segregated co-existence of languages
(cf. Patriarca et al., 2012 for an overview of various network models).

However, our data consists of the answers of randomly selected respondents
in the population of Estonia anddoes not include information about social net-
works, besides their self-reported attitudes and accounts of social activity. Vari-
ous theoretical models for creating networks with realistic structure have been
proposed (Toivonen et al., 2006), and while the pre-generation of networks for
the simulation couldbeanavenueof future research,weopt for allowing for the
emergence of networks in the model by incrementally increasing the strength
of the connections between agents upon successful interactions (and decreas-
ing upon failures) (cf. Gong et al., 2004 for a similar approach in the field of
language-society coevolution).

3.3 Overview of the simulation
The simulation is built to iterate a chosennumber of times. Each iteration (after
the initialization phase) consists of pairing up two agents and an attempt of
communication between them. Note that all the equations pertaining to the
simulation model, along with a more precise definition of the algorithm, can
be found inAppendix A. In broad terms, an iterationof the simulationproceeds
as follows:
– An agent is chosen randomly from the set of all agents to be the ‘starter’ (the

initiator of the act of interaction).
– Another agent is chosen randomly, but with weighted probabilities (see

below), from the set of all agents (minus the starter), to be the ‘partner’ for
the starter in the act of interaction.

– The two agents interact for up to three rounds, taking turns proposing a lan-
guage to be used for communication; this has two possible outcomes:
– A common language for communication is successfully agreed upon, the

interaction ends with success
– No common language can be agreed upon, the interaction ends with fail-

ure
– Depending on the outcome of the interaction, the following values are

updated:
– Link strength between the two agents (success strengthens the link, fail-

ure weakens it)
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– Their memory of a common shared language (upon the next interaction,
this will be the first proposal by whichever of the two will have the role of
the starter agent)

– Their knowledge of each other’s ethnicity (they are now aware of each
other’s true ethnic identity; upon first contact, they made a guess; cf.
Appendix B for details).

In the model initialization stage, the self-reported values (for language profi-
ciencies and behavioral preferences) of each respondent in the chosen sample
are used to build one (or potentially more) agent(s). The samples in our exper-
iment were chosen to be approximately the same size (about 70–80 agents
each), based on the subsample sizes in the survey. Dealing with large and vari-
able population sizes is of course an avenue for future research. Each agent has
the following properties derived from the questionnaire data: 1) self-reported
proficiency values for the three languages considered in the model; 2) ethnic
self-categorization; 3) extent of ethnic homophily; 4) level of accommodation.
The simulation furthermore includes global parameters that determine the
weight of the impact that these properties have on language andpartner choice
(more below). The rest of this section describes the subroutines that make up
themodel—for amore detailed, algorithmic description (alongwith values for
constants and further explanation of themodelling choices), please refer to the
Appendix.

On each iteration of the simulation, two agents are partnered up using the
Partner Selection subroutine. The two agents engage in an interaction (using
the Interaction subroutine), which can have two outcomes, success or failure,
as outlined above. Upon success, the language they used to successfully inter-
act will be recorded as the common language of this pair of agents, and the
link between them increases (but not over the maximum value of 1)—this is
the low-level process that gives rise to networks in the model. Upon failure,
any previous common language record is removed and the link between them
weakens. Regardless of the outcome, two things occur in the end of each itera-
tion: each agent in the chosenpair becomes aware of the other’s ethnic identity,
and all links between all agents weaken by a small decrement (but not below
0). The latter is based on the assumption that, if people do not interact for
a while, their relationship suffers over time (but note that we handle ‘time’
only in the sense of iterations, not in a real-world sense, and all conclusions
are drawn after a large number of such iterations, by which language choices
have become more or less stable). If any link reduces to 0 again, the common
language between these agents is erased and their knowledge (or rather, now
a guess) of each other’s ethnic identity is set back to the initial probabilistic
value derived from the ethnic composition of the setting.
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The Partner Selection subroutine works as follows: the starter agent is cho-
sen randomly, and it is assigned apartner semi-randomly, the chance of becom-
ing a partner being weighted. The weighting depends on the strength of the
existing link between the two, the existence of mutual “friends” (triadic clo-
sure), and the ethnic preferences (level of homophily) of the starter agent, with
the probabilities taken from a logistic (note, not logarithmic) transformation
of the value (the value is always > 0, i.e., all agents are in principle capable
of choosing anyone else in the sample). The global parameters controlling the
weight of ethnic preference and the shape of the curve are discussed in thenext
section (cf. Figs 1, 2).

The Interaction subroutine consists of up to three rounds (since there are
currently three languages in the model), with the agents taking turns propos-
ing languages to use. In the first round, the starter agent proposes the language.
If a common language has been recorded from an earlier interaction, this is
automatically proposed to the partner first—the rationale being that once peo-
ple get used to using a language among themselves, it would be reasonable
to expect they will use it again the next time. Otherwise, the starter proposes
the language it knows best (or randomly one of the languages it knows). The
partner either accepts it (Interaction ends successfully) or not, whereby the
Interaction continues into round two, with the partner agent now propos-
ing a language, and so on. If the responding agent accepts a proposal at any
point, the Interaction ends and success is reported. An agent always accepts its
native language (maximal proficiency value) and always rejects a language it
does not know (proficiency value 0). The linguistic accommodation value (and
respectively the global parameter controlling its importance) plays a role when
an agent has an intermediate proficiency value. In this case, the acceptance
of a proposal is decided probabilistically: if the acceptance value (calculated
from the language proficiency and accommodation level of the respondent,
weighted by the aforementioned global parameters) is larger than a random
number between (but excluding) 0 and 1, drawn from a uniform distribution,
then the language is accepted. If no language has been accepted after three
rounds, the Interaction ends in failure.

For the purposes of this experiment, all models ran for 500,000 iterations,
which we found to be enough for the observed language choice values and
network properties to become stable. Each model (parameter combination)
was rerun 10 times to assure the generalizability of the results. All features and
statistics discussed in this paper are based on measuring the outcomes of the
last iteration.
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table 1 The parameters and their assigned values in the models. The effects of these val-
ues on communicative partner selection and interactions between agents are
illustrated in Figs 1 and 2 (see Appendix A for more).

Parameter Abbr. Affects Low Hypothesized High
extreme reasonable extreme

importance of accommoda-
tion level in Interaction

c 0.1 2 1000

curve parameter in
Interaction

b c 0.001 10 10,000

weight of ethnic preference
in Partner Choice

e 0 3 100

curve parameter in Partner
Choice

d e 0 3 100

passive link decay constant pd 0.0001 10

3.4 Selecting the simulation parameters
There are a number of global parameters that control the weight of the soci-
olinguistic factors described above. However, with the parameters being both
continuous and unbounded in their values, the possible space of combinations
is effectively infinite. Therefore, we configured the combinations to represent
extremes of the functions, contrasted with what we perceived as reasonable
values for the parameters (the middle value in each triplet), based on experi-
mentation and sociolinguistic intuition.

Table 1 shows the combinations of global parameters and their respective
values thatwere tested in the simulations (seeAppendix A for details and equa-
tions).

In the cparameter (importanceof accommodation), higher values givemore
weight to the accommodation level of the speaker (as reported in the sur-
vey) in the formula determining whether or not to accept a proposed second
language, while values close to zero nullify the accommodation effect, leav-
ing the decision dependent on language proficiency only. The accompanying
curve parameter b controls how language proficiency (in combination with
accommodation) affects accepting a second-language proposal—high values
produce a step function with a sharp cutoff in the middle (low proficiency:
always refuse, high: always accept), while lower values produce a smoother
curve. Values close to zero nullify the effect of language proficiency on the deci-
sion to accept or refuse a proposal.
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Weight of the ethnic preference (e) parameter controls howmuch thehomo-
phily of the agent affects its choice of communication partners. A value of zero
nullifies the effect of homophily, making the agents regard all other agents,
regardless of ethnicity, as equal communication partners. A high value of e
amplifies homophily, making even slightly biased agents much more likely to
choose agents with the same ethnicity as communication partners. The curve
parameter d controls the shape of the function similarly to b.

Thepassive linkdecay constant, orpd, controls how fast already formed links
decay in the network as the simulation proceeds. This is used to control net-
work formation—a value considerably above zero allows links to survive for a
while without being used, while a very small value removes every link as soon
as it is formed, effectively disabling any network formation in the model (so in
models with p=0.0001, d has no effect; e is then kept constant at 0). A very high
value would yield a fully connected network (which would be, again, unrealis-
tic).

Leaving out combinations that would produce identical or near-identical
results (signified by empty plots below), we reach a parameter space with 58
combinations.We hypothesize that the combinations illustrated by the central
positions on the two 3×3 plot grids in Figs 1 and 2 would yield the best model
in terms of correspondence with the real-world language choice data (i.e., c=2,
b=10; e=3, d=3; pd=10). Figures 1 and 2 illustrate possible outcomes of the dif-
ferent values for the parameters controlling the interaction (language choice)
and partner choice.

The simplest baselinemodel is the one illustratedby the functions on the top
left subplots in Figs 1 and 2—where there is no preference for partner selection
and language acceptance chance is always at 50–50 (with the exceptions of
native or maximal proficiency language and no proficiency)—with the addi-
tional attribute of disabling network formation by setting the passive decay
parameter to a very low value. Depending on the parameters of the model, the
simulations yielded various kinds of networks with different topologies, some
of which are exemplified in Fig. 3. The presence of a (strong) link between any
two agents reflects the fact that they have managed to communicate success-
fully in the recent past (iterations) and are likely to do so in the future (should
the simulation continue).

3.5 Validation procedure
We hypothesize 1) that the simulation of interactions between initially uncon-
nected agents (based on the questionnaire data), endowed by the language
competencies and principles of interaction described in the previous section,
would give rise to a social network structure resembling actual social networks,
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figure 1 The Partner Choice function with different combinations of parameters. The
strength of the connection between the agents (their link and their “common
friend” links) is shown on the horizontal axis, with the potential weights for
partners (for the semi-random choice) on the vertical axis. The colored lines
exemplify the effect of the ethnic preference value of an agent, with red stand-
ing for less and blue for more preference to interact with members of their own
ethnic group only. The red and black dashed line marks no preference (0; this
is also in effect in the case of perceived same identity), and the blue stands for
the strongest ethnic preference value across the samples (~0.7), with continuous
gradience (illustrated by lines) in between. Setting the ethnic preference impor-
tance value (e) to 0 removes ethnic preferences from the model, setting it at a
high value makes all even slightly ethnically biased agents try to avoid other eth-
nicities and only select for ethnic in-group partners.

and 2) that the extent of the languages (Estonian, Russian, and English) used
in this social network would quantitatively resemble the extent to which these
languages are used in corresponding communities. This calls for a way to quan-
tify the usage of languages in the model, an operationalization of the self-
reported languageusage data from thequestionnaires, and ametric to compare
the resulting distributions.

For each respondent in the survey, the proportion of their language use was
calculated by taking the mean of the questions asking about their language
choice in communicationwith friends, hobby and sports companions, and ser-
vice personnel (see Section 2 for details). In the simulationmodel, the distribu-
tion of languages was calculated based on themean of the Common Language
values betweeneachagent and their linkedpartners. In otherwords, each agent
contributes a value between 0 and 1 to the distribution, where 1 stands for hav-
ing used only their native language as the language of communication with
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figure 2 The Interaction function with different combinations of the parameters. The
horizontal axis corresponds to the language proficiency of the agent in the pro-
posed language (self-reported using a 7-point scale in the questionnaire; no
proficiency on the left, native proficiency on the extreme right). The colored
dots (connected by lines for visual aid) represent the interaction between lan-
guage proficiency and various levels of accommodation: green is the maximum,
or eagerness to speak the language of the other; red is the minimum, or aversion
to speaking other languages; the grey in the middle stands for 0.5 or no strong
preference—neither eagerness to speak the language of the other nor avoidance
of such interactions.

all their currently linked partners and 0 stands for the opposite, having always
agreed to use one of the other languages with all their partners.

The language usage distribution was compared to the behavior exhibited by
the agent population. The respective empirical cumulative distribution func-
tions were compared by utilizing the widely-used two-sample Kolmogorov-
Smirnov distance statistic, yielding a simple numeric value for each simulation
run, representing how closely the simulation approximated the real world (by
the last iteration). Simply put, we compare the distribution of language choices
(howmuch each agent communicates in their first language and howmuch in
other languages) to the distribution of language choices in the survey samples.
The closer the simulated distribution to the survey distribution, the more real-
istic the simulation. This allowed for the comparison of the combinations of
parameters and provided a way to evaluate howwell each parameter combina-
tion performed. For consistency, each individual parameter combination was
repeatedly simulated ten times.
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figure 3 Various networks produced by the simulations. The nodes represent agents, and
the color their native language. Red stands for Russian, blue for Estonian (and
pink for self-professed bilinguals, yellow for other). The size of a node reflects the
number of its edges (links) and the width of an edge corresponds to its strength.
Network A: a sparsely connected network with mostly weak links (Tartu sam-
ple [see below for sample descriptions], with mostly Estonian speakers; c=0.1,
b=0.001, e=0, d=0). B: a segregated network with two well-connected subgroups
(Narva sample, c=2, b=10, e=3, d=3). C: a well-connected “small world” type net-
work of a mixed language community (Tallinn sample, c=2, b=10, e=0, d=3).

4 Analysis of the results

We tested the model on three samples derived from three different linguistic
environments: the South-Estonian town of Tartu with an Estonian-speaking
majority and a small Russian-speaking community (70 agents), the Russian-
language-dominated North-Eastern Estonia (represented by the towns of
Narva andKohtla-Järve; 81 agents) and a subset of Tallinn, the capital, with only
a slight Estonian language majority (the districts of Haabersti and Mustamäe;
80 agents). The results are illustrated in Fig. 4. It is immediately visible that
models without networks (dark blue on the right side of each panel in Fig. 4)
tend to perform the worst, as expected, while the best models tend to have
more densely connected networks (agents having 7–9 links on average). The
hypothesized reasonable parameter combination (the redonemarkedwith the
red arrow in Fig. 4) is among the top performers—although it does not neces-
sarily perform the best, there is not much difference among the top models
either.

There seems tobe considerable variationamong the three samples regarding
the performance of the model across parameter combinations—in the Narva
sample (middle subplot in Fig. 4), the different parametrizations do not seem
to make significant difference compared to the other two samples, while there
is a clearer divide between networked and non-networked models (marked
with dark blue). It should be kept in mind, though, that Narva is very much
a one-language (Russian) dominated sample, hence it is “easier” for a model
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figure 4 Results of the 58 model tests on the three sample populations, ordered by the
mean of the Kolmogorov-Smirnov statistic. The vertical axis corresponds to the
value of the Kolmogorov-Smirnov statistic, where 0 would indicate an exact
match to the real-world usage distribution as attested by the survey. The gray
dots with error bars (whiskers) on the white background visualize the results
for each parameter combination. The dot in the middle of the bar is the mean
for that parameter combination (across the 10 test runs of each model), the error
bars stand for the mean ± its standard deviation. The dark red bold bar, empha-
sized with the solid red arrow, marks the hypothesized reasonable parameter
combination. The dark blue ones correspond to the models without network
formation. The small dashed blue arrows on the right mark the hypothesized sim-
plest baseline models for each sample (no effect of ethnic preference, no effect
of accommodation, no network formation). The top performing combination is
labeled in italics with its parameters on the far left. Additionally, some interesting
groups of models that happen to form a contiguous ordering and share the same
parameter pattern have been labelled with black horizontal segments, with values
in italics. The darker panel on top shows the mean number of links per agent in
the models for each parameter combination.

to yield reasonably good results—the probability that an agent is paired with
an agent with the same native language is much higher (and native language
proposals are always accepted).

Finally, there is a subset of models with networks in the Tallinn sample
that actually perform worse than non-networked models. While network for-
mation seems to be a prerequisite for good results in the other samples, bad
parametrization apparently causes the subset of networkedmodels to perform
worse in this particular case. Closer inspection reveals that, for all of them, the
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value of the weight of ethnic preference (e) parameter is above 0 (3 or 100,
i.e., agents with some homophily rather prefer partners from their own ethnic
group) and the corresponding curve parameter d uniformly at 100, i.e., agents
strongly prefer partners withwhom they have above-average links and strongly
avoid agentswith below-average links (leading to sparsely connectednetworks;
cf. the step function illustrated in Fig. 2, on the twobottom rightmost subplots).
While having the step function in Partner Choice perform badly is not a sur-
prise, it seems it has a greater effect in this sample than in the other two. These
results call for a closer look at the contributions of the five global parameters
to the outcome.

Figure 5 further visualizes the difference between three distinct parame-
trizations of the model in terms of network properties and correspondence
with the real-world data. It appears that, given reasonable parameters, a rel-
atively stable and connected network (high transitivity, more than a few links
per agent) forms rather quickly. The Kolmogorov-Smirnov distance (K-S) to the
real-world language usage distribution, while sensitive to the stochastic pro-
cesses in the model, remains in a certain range. On the other hand, lower net-
work connectivity (subplot B in Fig. 5.; or lack of it, cf. subplot C) appears to
lead to less realistic language usage (indicated by a higher K-S distance).1

4.1 Assessing the parameters
In order tomeasure the importance of the parameters in terms of the final out-
come of themodel, we used a relatively straightforwardmachine learning tool,
conditional random forests (Hothorn et al., 2006; Strobl et al., 2008). Random
forests consist of a number of conditional inference tree classifiers (similar to
decision trees in broad terms). An advantage of conditional inference trees is
that they consider all possible interactions between the predictors while con-
trolling for possible correlationsbetweenpredictors, and theyhavebeen shown
to perform well with categorical variables. Random forests repeat the classi-
fication procedure by growing a large number of such trees, allowing for the
measurement of the average relative importance of predictors in terms of clas-
sifying the response. We grew 10,000 trees for each of the three city samples

1 Note that the apparent stability (of the K-S statistic value) of the model without network
(bottom plot) is a technical artifact: since there is no network, there is no memory, hence
there are no common languages. To average language use over iterations in these models, we
simply record all successful language choices as a separate structure akin to the common lan-
guage matrix, and calculate the fit with real-world data based on that. In a network-forming
model, links can disappear over iterations, so the matrix of common languages is constantly
changing—hence the variation.
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figure 5 The first 250,000 iterations (horizontal axis) of three models from the Tartu sam-
ple. The top one (plot A) corresponds to the hypothesized reasonable parameter
combination, the middle one (B) to a hypothetically inferior combination but
with network formation enabled (c=0.1, b=10,000, d=0, e=0, pd=10) and the bot-
tom one (C) to a model without network formation. The lighter lines correspond
to the values of each of the 10 runs of the model, with the darker bold line show-
ing the average across the 10. The statistics are measured once in every 1000
iterations, starting from the 1000th iteration. Light blue is for the average num-
ber of links per agent (divided by 10 for visualization purposes), black is for the
K-S statistic (lower = closer to real data) and dark green for the transitivity of the
network (the probability that the adjacent vertices of a vertex are connected, also
known as graph clustering coefficient—this corresponds to the notion of triadic
closure).

to ensure stability of the results, and used the training settings for unbiased
forests as suggested by Strobl et al. (2007).

The Kolmogorov-Smirnov statistic is set as the (continuous) response vari-
able and the parameter values as (categorical) predictors (while they are all
numeric, treating them as continuous values would be counterproductive).
The passive link decay parameter is excluded, along with the models with-
out network formation, since they function differently and do not make use
of all the parameters, as discussed above,making direct comparison difficult—
moreover, theywere already shown toperformnoticeablyworse in theprevious
section. In short, we are interested in the relative contribution of the rest of
the four parameters in themodels with network formation (n=490 per regional
sample: 10 runs of eachparameter combination,minus themodelswithoutnet-
works).
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figure 6 Normalized relative importance of the simulation parameters in predicting the
outcome of the simulation, i.e., the similarity to real-world data as measured with
the Kolmogorov-Smirnov statistic. Only models with network formation are con-
sidered. Parameters on the right side of the bold gray line (at 0) can be considered
significant predictors. As before, c is the importance of accommodation level in
Interaction; b is the curve parameter in Interaction; e is the weight of ethnic pref-
erence in Partner Choice, and d stands for the curve parameter in Partner Choice.

The results from the random forests for each of the three samples (Fig. 6)
show the relative contribution of each of the aforementioned simulation
parameters across the three samples. The figure shows the importance values
normalized to the range between 0 and the value of the most important vari-
able, since the actual raw importance values of random forests are not directly
comparable across models.

Note, of course, that these results should be viewed in the context of the
parameter space of themodels (which consisted of extreme values, contrasted
with what we assumed to be more reasonable values, as explained above). The
importance scores reflect the association of these values with the model out-
come (Kolmogorov-Smirnov) value.

The parameter c controlling the importance of linguistic accommodation in
Interaction, i.e. deciding whether to accept a proposed language or not, turns
out to be of low importance in the case of Tartu, and next to none inTallinn and
Narva. In other words, linguistic accommodation (given the current parameter
space, at least) does notmakemuchof a difference in termsof model fit.We ini-
tially hypothesized that the attitude towards speaking other languages should
influence language choice, yet it seems it only does so to some small extent,
at least in this implementation and these samples. All the questionnaire data
are self-reported and the results generally indicated high levels of accommoda-
tion. Itmay be that the questions did not quite capture the essence of linguistic
accommodation, or the population in Estonia is actually very accommodating.
This factor may still turn out to be significant in some other settings in which
higher levels of non-accommodation have been reported (cf. Clément et al.,
2003).

As for the curve parameter b, which appears to be of low importance (and
next tono importance inTallinn), it is important to bear inmind that the agents
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always accept their native language and reject languages inwhich they have no
proficiency. Apparently, what happens with in-between proficiencies does not
affect the model very much.

The two simulation parameters that are consistently important appear to be
the weight of ethnic preference e in choosing an interaction partner, and the
curve parameter d, which controls the likelihood of choosing amongst poten-
tial partners. In other words, having good parameters for forming realistic lin-
guistic networks (and enough simulation time for agents to seek out suitable
communication partners by trial and error) seems to be almost enough to pro-
duce a realistic model of a language community (with the assumption that
speakers will accept their native tongues and reject unknown ones).

The random forest results are also consistent with the observations in the
previous section (cf. Fig. 4) concerning the Tallinn sample, where different val-
ues of the d parameter cause a noticeable difference. In the sample drawn from
the Russian-language-dominated North-Eastern Estonia (Narva and Kohtla-
Järve), the most important parameter is that of importance of ethnic prefer-
ence, which takes second place in the two other models.2 Observing, in this
case, the individual parameter combinations and their outcomes reveals that
turning off ethnic preference in the model (e=0) is associated with worse per-
formance (higher Kolmogorov-Smirnov distance value).

4.2 Analyzing network structure effects
It has been observed that realistic social networks follow certain statistical ten-
dencies. Figure 5 above already illustrated that bettermodelsmaybe associated
with a higher network transitivity value.Having observed that the parametriza-
tion of the mechanism dictating partner choice (and hence network forma-
tion) plays a crucial role in our model of language choice, it would be valuable
to see if the performance of our models in terms of language choice distribu-
tion correlates with values deemed to characterize realistic social networks in
previous research. The following naturally only applies tomodels with network
formation. Furthermore, we restrict the analysis to networks with a large num-
ber of links, since the metrics discussed below make little sense in networks
with a large number of isolates or very little connectivity. As the models are
clustered quite clearly in all three samples between those having a high mean
number of links per agent and those in which this number is low (cf. Fig. 4),

2 However, it should be noted that, unlike the other samples, there is a small but still sig-
nificant correlation between the ethnic preference and accommodation values among the
participants of the Narva sample (R2=0.12, p=0.002). The random forest method gives more
importance to the better predictor in case of multicollinearity.
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below we simply consider only those models with more links (than the grand
mean; incidentally, that is uniformly 210models—including re-runs—per sam-
ple).

Real-world social networks have been observed to exhibit a number of sta-
tistical properties. For instance, they tend to have low values of average path
distance between nodes (the “small world” effect, or low degrees of separa-
tion) and high values of transitivity (or clustering, correspondent with the
notion of triadic closure) (cf. Borgatti et al., 2009; Toivonen et al., 2006; Dekker,
2007; Tsourakakis, 2008). Furthermore, high values of modularity have been
observed (modular communitieswithin communities; cf. NewmanandGirvan,
2004, Clauset et al., 2004).3 Since low values of the Kolmogorov-Smirnov statis-
tic correspond to realistic languageuse in ourmodels, if wewere tohypothesize
that realistic usage is associated with realistic networks, then the expected cor-
relations of the abovementioned threemetrics with K-S would be, respectively,
positive (average distance), negative (transitivity) and negative (modularity).
We construct a linear regression model for each of the three samples, with the
three metrics as predictors and K-S as the response variable.

In the Tartu sample (unlike in the others), transitivity and modularity are
collinear; testing them separately shows that both are significantly negatively
correlated with K-S, while average distance is expectedly positively correlated
in both (adjusted R2=0.29 for transitivity+distance, 0.1 formodularity+distance,
p<0.001 for bothmodels). In the Narva sample, transitivity andmodularity cor-
relate significantly with K-S (adjusted model R2=0.33, p<0.001), but transitivity
does so positively, unexpectedly. In the Tallinn sample, only modularity is sig-
nificant, with an expected negative sign (adjusted model R2= 0.1823, p<0.001).
These results seem to be in alignment with the results of the random forest
analysis and the distributions of the models (cf. Fig. 4). While network forma-
tion affects the results differently in Narva (with networks with triadic closure
apparently yielding somewhat worse simulation scores), it is important for
model success in Tartu; all the while something different seems to be going
on in the Tallinn sample, where modular networks fare better but the other
metrics are not associated with performance.

3 For isolated or single-link agents, we assign a transitivity value of 0; the average path length
calculation only considers connected agents when traversing the graph; and we use 4-step
random walks in the graph to determine communities in an unsupervised manner (cf. Pons
and Latapy, 2005) as a basis formodularity calculation (Clauset et al., 2004;making use of the
implementations by Csárdi and Nepusz, 2006 for all the metrics).
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5 Discussion

We assumed that a realistic social network is necessary for a realistic model
of language choice to yield reasonable outcomes. This turns out to be the
case to some extent—models with no network formation process (or param-
eters strongly inhibiting network growth) performed noticeably worse com-
pared to models that allowed for networks to form. In the Tallinn sample,
it was observed that incorrect parametrization can make networked mod-
els even worse than models without networks in terms of performance. Fur-
ther analysis of the models (with various parameter combinations) indicated
that the simulation also performs rather differently given different samples of
data, as the contribution of the parameters varies across samples. While we
noticed that models initialized with the parameter combination hypothesized
to yield reasonably good results indeed did do so, it appears that, depending
on the sample, other parameter combinations may perform as well or bet-
ter.

We observed positive correlations betweenmore realistic network structure
and model performance, but the correlations tended to be on the weak side.
Then again, what we implemented was a rather simplistic model of human
communication, and notably the formation of links in our model is entirely
dependent on finding a common language, while in the real world, there are
other factors that presumably affect social network formation.

A possible complication of our model is that it attempts to kill two, albeit
possibly related birds with one stone: to generate a realistic network between
the community members, but also to allow the communities to make (maxi-
mally realistic) language choices.We observed that often these goals converge,
while there was also considerable variation among the samples, so that the
parameters controlling the language choice and partner selection (network
formation) mechanisms had differing importance in the three samples. Fur-
thermore, we only tested the model for relatively small samples of agents, and
also kept some underlying parameters constant (see Appendix A for details).
Future research should address those issues and generalize the model to work
on agent populations of various sizes (we noted that there is considerable dif-
ference in convergence time given agent populations of different sizes, hence
we opted to test only similarly sized samples to obtain comparable results).

Another avenue for future research involves the notion of linguistic accom-
modation, orwillingness to speak the language of “the other,”whichwehypoth-
esized should have an effect on the language choice process. Our simulation
results demonstrate that the effect of accommodation is rather negligible in
terms of the final outcome of the model. There are multiple possible explana-
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tions in this case. It may be that the questionnaire data did not quite capture
the actual linguistic attitudes of the respondents or the population is indeed
very accommodating. It is also possible that the formula underlying the simu-
lation did not capture the complexity of the process (or, on the contrary, should
be simplified instead, possibly collapsing the accommodation and homophily
values), or that the assumed shape of the function or the tested values of the
corresponding weight parameter are simply not close enough to the ideal. This
observation calls for further experimentation and possible amelioration of the
interaction part of the model.

6 Conclusions

We constructed an agent-based simulation model for language choice in mul-
tilingual communities and tested its performance on three samples of data
drawn from a questionnaire carried out among native speakers of Estonian
and Russian in Estonia. In contrast with previous work on diachronic language
competition models, our purpose was to create and test an individual-driven
model of synchronic language choice (reflective of language competition on
the community level), grounding our model in recently collected sociolinguis-
tic survey data.

The simulation incorporates a simplifiedmodel of human interactionwhere
pairs of agents negotiate the language to be used in a hypothetical conversa-
tion. As the simulation progresses, a semi-stable network may or may not be
formed among the agents, who may then proceed (depending on the global
parameters of themodel) to communicatemore likelywith agents they already
have communicated with before. We tested a large number of global parame-
ter combinations on three samples of agents, based on three sociolinguistically
different areas of Estonia. We found that models with different parameters do
behave differently, and thatwhatwe hypothesized to be a reasonable combina-
tion did perform rather well, presumably indicating that the model (given rea-
sonable parametrization) does reflect the corresponding real-world language
situation to a considerable degree. However, the parameters were found to be
unequal in terms of differentiating the outcomes of the model, both within
and between the three samples tested. We noted that the presence (and more
so, realistic attributes) of social networks may contribute to a more accurate
model of language competition, but again, the results differed across the three
samples.

All in all, these findings point to the necessity of considering the variability
between communities in building sociolinguistic language choice and compe-
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tition models (particularly if they underlie diachronic language survival mod-
els), the need to reliably model grassroots-level interactions, as well as the
importance of social networks in models of linguistic communities.
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Appendix

A Amore formal summary of themodel
The simulation model is characterized by:
– K, the set of languages in themodel (currently {Estonian, Russian, English})
– L, the set of links between every possible pair of agents in the model
– z, the number of agents in the set A
– n, the number of iterations to iterate
– r, the number of rounds to interact (propose languages) in Interaction: cur-

rently this is 3, corresponding to the number of two presumed native lan-
guages (Estonian and/or Russian) and one additional secondary language;
the introduction of more native languages into the model would increase r

There are a number of global parameters that influence a simulation:
– Importance of accommodation level a in Interaction, c
– S-curve parameter in the language choice process in Interaction, b
– Weight of ethnic preference in Partner Choice, e
– Curve parameter in Partner Choice, d
– Passive link decay constant, pd
– The increment/decrement in link strength change I (currently constant at

0.1)
Each agent i ∈ A is characterized by the following values:
– A proficiency value oik ∈ [0, 1] for all languages k ∈ K; 0 = no proficiency, 1

= native or full proficiency
– Accommodation levela ∈ [0, 1], reflectingwillingness to speak in other lan-

guages; 0 = strong aversion, 1 = strong eagerness; only plays a role in cases
where 0 < oik < 1, where k is a language offered to i in the course of the
Interaction process

– A link strength value between it and every other agent lij ∈ L ∈ [0, 1] (ini-
tially all 0; effectively plays no role if pd is too small to allow network forma-
tion)

– Its ethnic identity eid
– A value of “ethnic closedness” ec ∈ [0, 1], a measure of (not) being open to

interaction with the “other” ethnicity; 0 = views “own” and “other” ethnic-
ities equally in terms of potential communication partners, 1 = maximally
adverse to communicating with the “other”

– A common language value between i and every other agent comij ∈ K (ini-
tially all NA); only plays a role if pd is sufficiently large to allow network links
(and corresponding memory) to be preserved

– An “ethnic memory” set Ei consisting of the identity values for all other
agents that imay (come to) know (initially all unknown, NA)
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– A parallel “pseudo-memory” set Fi consisting of pseudo-identity values for
all other agents that i might interact with (generated semi-randomly upon
simulation initialization, but approximately reflecting the ethnic propor-
tions of the sample); this structure determines what i assumes to be the
ethnicity of agent j, if lij = 0; E and F effectively only play a role if e > 0
& eci > 0, and E only plays a role if pd is sufficiently large to allow network
links (and corresponding memory) to be preserved.

The simulation consists of the following components.
Main loop

iterate for n iterations:
choose a random agent (“starter,” s) from the set of all agents A
choose a “partner” (pi) → cf. Partner Choice
interact for up to r rounds → cf. Interaction

if the Interaction is successful:
link lspi

increases +I (up to 1)
the selected language is recorded as a Common Language comspi

else:
set comspi

back to NA (next Interaction will again start with proba-
bilistic language choice)
link lspi

decreases −I (but never below 0)
regardless of outcome:

s and pi are now aware of the true ethnicities of one another (update
Es and Epi

)
each and every link lij decreases slightly (currently 0.1/(an × pd))

if any link disappears (lij = 0) by the end of the iteration, then:
knowledge of common language is removed: comij set to NA
knowledge of the ethnicity of j is removed from i (Eij = NA), and vice
versa

output values from the last iteration of the simulation

Partner choice
the starter s is randomly assigned a partner pi from the set of potential part-
ners P (P = A − s); some members of P may have a considerably higher
chance, but all members of P have some chance to be chosen (although it
may be very low); already having a link and having “common friends” (tri-
adic closure; “a friend of yours is a friend of mine”) increases the chance of
being chosen:
if there is at least one such common link (lspi

> 0 & lspx
> 0 & lpipx

> 0),
then:

if s and pi have more than one common friend px, …, pz, then:
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tspi
= max(lspx

, …, lspz
)

else:
tspi

= lspx

else: tspi
= 0

if the identity pi is unknown to s (Espi
= NA), then:

take eidpi
from Fs (the pseudo-identity memory)

else:
take eidpi

from Es (the actual ethnic identity memory)
based on identities, determine the binary value ex := [eidpi

= eids]
each member of P is assigned a weight w: wpi

= (1 + lspi
) × (1 + tspi

) − (ex ×
(ecs × e))
partner choice is done by random sampling, the probabilities C for each
potential partner Cpi

= 1
1+e−d×(wpi−2.5) ∈ (0, 1)

Interaction
the starter s and the chosenpartnerpi interact for up to r rounds, taking turns
proposing a language of communication,with sproposing first; the common
language comspi

may be instantiated (or removed) as a result of the Interac-
tion, depending on the outcome, under the following conditions:

all languages k ∈ K in the model may be considered; okx stands for profi-
ciency in language kx; an agent may have maximum (i.e., native or near-
native) proficiency in one or more kx
every time a kx is offered, the value of accepting it depends on the okx and
a of the responding agent, and is determined as:

vkx = (( 1

1+e
−b(okx−(1−f(a))) ) × [okx > 0])1−[okx=1]

where f(a) = a−((1−c)/2)
c

any time a kx is offered, a random number rnd ∈ (0, 1) is generated; if
v ≥ rnd, then the interaction is considered successful and stops

the current model implements 3 rounds (we assume 2 native languages and
1 secondary language in themodel); in the final round, there is a chance that
smay ormay not, depending on its a, offer any language not yet offered dur-
ing this Interaction:whether or not swillmake the offer is determinedby the
same language acceptance formula as described above, where, if vkx > rnd,
then an offer for kx ismade (which the responding pi may ormay not accept)

practically, in the currently implementation, only one language option is
left at this point, since native language offers are always accepted
if multiple languages are available, s will offer the language where it has
higher proficiency (if equal, choose randomly); s cannot offer a language
it does not know
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success in the final round (the third language being stored as common
language) allows for scenarioswhere a speakerwith lowproficiency keeps
trying to communicate in a language they want to learn/use/etc.

an Interaction proceeds as follows:
first round of interaction; s offers a language kx as follows:
if a previous value for comspi

exists, then:
k1 = comspi

else:
M = max(osk); if |M| > 1 then:

k1 is randomly chosen amongM
else:

k1 = M
if pi accepts k1, then:

stop, report success
else:

second round; pi offers a language k2 as follows:
M = max(opik

); if |M| > 1 then:
k2 is randomly chosen amongM

else:
k2 = M

if s accepts k2, then:
stop, report success

else:
third round; smay make a final offer of k3:
N = K − {k1, k2}; if |N| > 1 then:

M = max(osN1
, …, osNz

); if |M| > 1 then:
k3 is randomly chosen amongM

else:
k3 = M

else:
k3 = N

if s accepts k3 (see above), then:
if pi accepts k3, then:

stop, report success
else:

stop, report failure
else:

stop, report failure
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B Additional notes on themodel and its properties
We implemented anumber of simplifications andkept certain parameters con-
stant to maintain the parameter space within manageable limits and allow for
the analysis of the initial results. This section describes some further technical
details that were left out of the main text to maintain readability.

Constants in the model
Thepassive linkdecay pd is currently implemented as a functionof thenumber
of agents, with a constant controlling the resulting decay rate; we used a value
that was observed to yieldmore or less stable networks in a reasonable amount
of time. Too large values prevent the formation of networks, too small values
allow for links to remain between agents who almost never interact. Notably,
the passive decay is linear (which could be argued against), but Partner Choice
operates on an S-curve, meaning that minor decay in “stranger” (low strength)
and “good friend” (high strength) links do not matter much in terms of prob-
ability of being partnered up again; yet the effect begins to accumulate once
the link is left unused for a while. The increment I that is added or deducted
from the link strength value between any two agents upon successful or unsuc-
cessful interaction, respectively, is kept constant (0.1) as well throughout the
simulation runs. Implementation of the effect of communication failure and
the questionwhether it is inversely symmetric to the effect of a successful inter-
action in terms of the relationship between the participants is left as a venue
for future research.

Perception of ethnicity
Knowledge of the ethnic identity of others is initially set semi-randomly. We
assign an additional pseudo-identity to each agent—where the probability of
being assigned to each group corresponds to the actual ethnic makeup of the
given sample—and generate knowledge for each agent pair from that (e.g., in a
sample basedon a community of 60%Estonian and40%Russian speakers, the
probability of being assigned an initial Russian pseudo-identity would be 0.4).
As the simulation proceeds and agents interact, they take the pseudo-identity
at face value upon first contact, but keep the correct identity of the partner
in mind for future interactions. The rationale is the following: upon meeting a
person, but before interacting, people make assumptions about the identity of
the other. This guess may or may not be correct, but it would be reasonable to
assume that if two people meet in a place where one ethnicity is known to be
the majority, then their guesses will be influenced by that knowledge.
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Randomness
There are multiple sources of stochasticity in the model, meaning that every
simulation run yields slightly different results, which prompts running each
parameter combination for several times and then observing their average out-
come (and variability). Partner Choice is stochastic, since the starting agent is
chosenat random, and its partner is chosenat semi-random(potential partners
may have very different chances of being chosen). Similarly, whether an agent
accepts a language during the Interaction phase or not is semi-random, but
the chance of acceptance varies accordingly with their proficiency and accom-
modation values (dependent on model parameters). As described above, the
pseudo-identity mechanism introduces another source of randomness.

Validation data
For each respondent, the proportion of their language use was calculated by
taking the mean of the questionnaire questions asking about language choice
in direct communication (i.e., excluding online communication and media
consumption such as television) with friends, hobby and sports companions,
and service personnel. It should be noted that the questionnaire also contained
questions about communication with other groups. The question concerning
language use in the family circle was excluded in this study, as the question-
naire only consists of respondents over the age of 15. Concurrently, there are no
“children” in the agent population, and therefore family communication can-
not be accurately simulated at this stage. The agent population can be thought
of as consisting of a sample of the adults in a given city. Questions regarding
school and workplace communication were excluded, as the simulation does
not feature organized clusters of agents that would emulate such settings. The
simulation does feature interactions that could be equated with real-life inter-
actions with “strangers”—agents that meet only once, communicate, but do
not meet again soon enough to form a lasting link. However, the question-
naire question concerning communicationwith strangers on the streetwas not
included, on the assumption that such communications are less frequent than
those with the other groups and would bias the validation data. The question-
naire did not include questions about the proportion of their time the respon-
dentswould spend communicatingwith friends, family, andother groups.With
all that in mind, we only used the Common Language values of links with
a strength > 0.1 in the validation process (the increment constant being 0.1,
agents that would have been in contact recently more than once wouldmostly
have links > 0.1, i.e., are not quite strangers anymore).

We used the Kolmogorov-Smirnov test statistic as the measure of distance
between distributions of language use from the models and the real-world
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figure 7 Example language distributions from the Tartu models. The best one, in red (cf.
Fig. 4 for comparison), is on the top and the worst one on the bottom, in blue.
The actual real-world distributions are shown as thick black lines, the model
results (10 runs for each combination) as the colored thin lines. On the left are the
smoothed density plots, and on the right, the empirical cumulative distributions,
which are used to calculate the Kolmogorov-Smirnov statistic used in model vali-
dation. Note that care should be taken with interpreting kernel-smoothed density
functions, since they can easily be misleading, depending on the chosen kernel
(Gaussian here) and bandwidth (here both: 0.08, following the rule of thumb
method from Scott, 1992).

distributions from the survey, being suitable for our data (cf. Fig. 7) as a non-
parametric, distribution-free statistic, calculated from the empirical cumula-
tive distribution of the data. The actual distribution consists of a fairly small
number of unique values, and any sort of smoothing (which would allow for
the direct comparison of distributions) carries the danger of misinterpreta-
tions stemming from over-generous or over-conservative smoothing values.

Finally, it could be argued that sharing a common language does not imme-
diately mean that two people would be able to communicate or get along in
the real world. This is a necessary idealization of the model: partner selec-
tion is only affected by the partner selection process (as outlined above), and
we do not aim to model all the possible (but ultimately intractable) personal
preferences, moods or desires that the agents could potentially exhibit, being
representatives of real-world human questionnaire respondents.
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