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> Goal: Quantification of visual aesthetics and artistic expression." 14!
> Previous research: Complexity approximated via compression (gif, png).

> Evaluation (1): MultiPic human visual complexity judgements in 6 languages. Regression
predicting human ratings (scale of 1-5). Out-of-sample absolute prediction error <0.24
(less than differences between languages). R?=0.71 (full), 0.61 (top 5 PCs), 0.37 (just gif).

> Evaluation (2): Artist and genre retrieval (PCA trained on 23k artworks, LDA+KNN
classifier). Test set of 23 artists with 100+20 artworks each, model correctly predicts artist
~65% of the time (cross-validated out-of-sample kappa; i.e. accounting for the random

> Here we propose a novel method, compression ensembles, using multiple compression
ratios of the image, its various transformations™, embedded in a latent vector space
(using PCA). Simultaneous comparison of multiple artworks in multiple dimensions of
complexity captures polymorphic family resemblance.l’!

. baseline accuracy of 4%). Similar for genre, art movement, and artist's nationality. Dating
> Pipeline:

. . prediction error within ~50 years.
o import as bitmaps;

. > Our method outperforms previous human judgement correlations, is cognitively plausible,
o 79 transformations; . o
and captures differences between artists' styles.
o compress all;

o record size ratios;

o run PCA.
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> Preliminary results: The possibility space of aesthetic complexity has expanded over time.
Below: time series of bootstrapped stdev of PCA components 1-5, based on the 23k

image sample, balanced by year, 1400-2018. The upper panel shows the distribution of 6
most frequent (style) categories plus other. Both plots 1800 onwards (zoom in for detail).

1§
‘D‘ //

l?v_

.
3
o

PC2: edge detection based on grayscale gradients & Canny filter; color quantization; @ c-cosine filter
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i3 approach should also be applicable in other domains beyond visual art, in particular, cf.
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